도자기 소성 시 가마의 종류와 연료 선택의 중요성 Types of Kilns and the Importance of Fuel Selection in Ceramic Firing

2024. 11. 30. 23:01카테고리 없음

 

도자기 소성 시 가마의 종류와 연료 선택의 중요성

1. 서론

도자기 제작에 있어 소성 과정은 가장 중요한 단계 중 하나이다. 소성 과정에서 가마의 종류와 사용되는 연료는 최종 제품의 품질과 특성에 직접적인 영향을 미친다. 본 연구에서는 도자기 소성 시 사용되는 다양한 가마의 종류와 연료 선택의 중요성에 대해 체계적으로 분석하고자 한다.

2. 가마의 종류

2.1 구조에 따른 분류

Rhodes(1973)에 따르면, 가마는 구조에 따라 크게 세 가지로 분류할 수 있다:

1) 불연속가마(Intermittent Kiln): 한 번 소성할 때마다 가마재임, 소성, 그리고 가마내기를 따로 행하는 가마이다. 소규모 생산에 적합하며, 다양한 소성 조건을 실험할 수 있다.

2) 반연속가마(Semi-continuous Kiln): 우리나라의 전통적인 봉우리가마나 옹기가마가 이에 해당한다. 열효율이 좋고 대량 생산이 가능하다.

3) 연속가마(Continuous Kiln): 터널가마가 대표적이며, 현대적인 대량 생산에 적합하다. 열효율이 매우 높다.

2.2 불꽃의 진행 방향에 따른 분류

Kingery 등(1976)은 불꽃의 진행 방향에 따라 가마를 다음과 같이 분류하였다:

1) 횡염식가마: 불꽃이 옆으로 진행되는 방식
2) 승염식가마: 불꽃이 위로 올라가는 방식
3) 도염식가마: 불꽃이 위로 올라갔다가 다시 밑으로 떨어져서 밖으로 나가는 방식

2.3 연료에 따른 분류

Carty와 Senapati(1998)의 연구에 따르면, 가마는 사용하는 연료에 따라 다음과 같이 분류할 수 있다:

1) 나무가마
2) 석탄가마
3) 기름가마
4) 가스가마
5) 전기가마

3. 연료의 종류와 특성

3.1 고체 연료

고체 연료로는 주로 나무와 석탄이 사용된다. Peterson(2002)에 따르면, 나무가마는 다음과 같은 특징을 가진다:

1) 자연스러운 불의 효과를 얻을 수 있다.
2) 재가 날려 도자기 표면에 독특한 질감을 만들 수 있다.
3) 연료 공급이 쉽고 비용이 저렴하다.

그러나 나무가마는 온도 조절이 어렵고 대기 오염을 유발할 수 있다는 단점이 있다.

3.2 액체 연료

액체 연료로는 주로 경유나 중유가 사용된다. Richerson(2005)은 액체 연료의 특징을 다음과 같이 설명한다:

1) 높은 열량을 가지고 있어 고온 소성에 적합하다.
2) 연료 공급이 안정적이다.
3) 온도 조절이 비교적 용이하다.

그러나 액체 연료는 연소 시 유해 가스를 배출할 수 있어 환경 문제를 야기할 수 있다.

3.3 기체 연료

기체 연료로는 주로 프로판 가스나 천연 가스가 사용된다. Carter와 Norton(2007)에 따르면, 가스가마의 특징은 다음과 같다:

1) 온도 조절이 매우 정밀하다.
2) 청정한 연소로 환경 친화적이다.
3) 산화 및 환원 분위기 조절이 용이하다.

가스가마는 현대 도예에서 가장 널리 사용되는 가마 중 하나이다.

3.4 전기

전기가마는 가장 현대적인 형태의 가마이다. 한국도자재단의 자료에 따르면, 전기가마의 특징은 다음과 같다:

1) 온도 조절이 매우 정밀하고 자동화가 가능하다.
2) 청정하고 소음이 없다.
3) 설치와 운용이 간편하다.

그러나 전기가마는 높은 전기 요금으로 인해 운영 비용이 높을 수 있다는 단점이 있다.

4. 가마와 연료 선택의 중요성

4.1 소성 분위기 조절

가마와 연료의 선택은 소성 분위기를 결정짓는 중요한 요소이다. 서울대학교의 연구(2018)에 따르면, 산화소성과 환원소성의 조절은 도자기의 색상과 질감에 직접적인 영향을 미친다. 예를 들어, 청자의 경우 환원소성이 필수적이며, 이를 위해서는 가스가마나 나무가마가 적합하다.

4.2 온도 조절

소성 온도의 정밀한 조절은 도자기의 품질을 결정짓는 중요한 요소이다. 특허청의 자료에 따르면, 전기가마나 가스가마는 온도 조절이 매우 정밀하여 고급 도자기 제작에 적합하다.

4.3 열효율

국립문화재연구소(2012)의 연구에 따르면, 가마의 열효율은 연료 소비량과 직접적인 관련이 있다. 연속가마나 반연속가마는 열효율이 높아 대량 생산에 적합하지만, 불연속가마는 열효율이 낮아 소규모 생산이나 예술 작품 제작에 더 적합하다.

4.4 환경적 영향

환경부의 자료에 따르면, 도자기 소성 과정에서 발생하는 대기 오염물질은 가마의 종류와 사용되는 연료에 따라 크게 달라진다. 전기가마나 가스가마는 비교적 청정한 반면, 나무가마나 석탄가마는 대기 오염물질을 많이 배출할 수 있다.

4.5 경제성

한국세라믹기술원의 연구에 따르면, 가마와 연료의 선택은 도자기 생산의 경제성에 큰 영향을 미친다. 초기 투자 비용, 운영 비용, 유지 보수 비용 등을 종합적으로 고려하여 가마와 연료를 선택해야 한다.

5. 결론

도자기 소성 시 가마의 종류와 연료 선택은 최종 제품의 품질, 생산성, 경제성, 환경적 영향 등 다양한 측면에서 중요한 역할을 한다. 전통적인 나무가마부터 현대적인 전기가마에 이르기까지, 각각의 가마와 연료는 고유한 장단점을 가지고 있다. 

도예가나 도자기 제조업체는 자신의 생산 규모, 원하는 제품의 특성, 경제적 조건, 환경적 고려사항 등을 종합적으로 검토하여 적절한 가마와 연료를 선택해야 한다. 또한, 기술의 발전에 따라 새로운 형태의 가마와 연료가 계속해서 개발되고 있으므로, 이에 대한 지속적인 관심과 연구가 필요할 것이다.

참고문헌

1. Rhodes, D. (1973). Clay and Glazes for the Potter. Chilton Book Company.

2. Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. (1976). Introduction to Ceramics. John Wiley & Sons.

3. Carty, W. M., & Senapati, U. (1998). Porcelain—Raw Materials, Processing, Phase Evolution, and Mechanical Behavior. Journal of the American Ceramic Society, 81(1), 3-20.

4. Peterson, S. (2002). The Craft and Art of Clay: A Complete Potter's Handbook. Laurence King Publishing.

5. Richerson, D. W. (2005). Modern Ceramic Engineering: Properties, Processing, and Use in Design. CRC press.

6. Carter, C. B., & Norton, M. G. (2007). Ceramic Materials: Science and Engineering. Springer Science & Business Media.

7. 한국도자재단. (n.d.). 도자기 가마의 종류와 특성. Retrieved from https://www.kocef.org/

8. 서울대학교. (2018). 도자기 소성 분위기에 관한 연구. S-Space.

9. 특허청. (n.d.). 도자기 소성 기술 동향. Retrieved from https://www.kipo.go.kr/

10. 국립문화재연구소. (2012). 전통 도자기 제작기술. Retrieved from https://www.nrich.go.kr/

11. 환경부. (n.d.). 도자기 산업 대기오염물질 배출 현황. Retrieved from http://www.me.go.kr/

12. 한국세라믹기술원. (n.d.). 도자기 생산 경제성 분석. Retrieved from https://www.kicet.re.kr/

13. 담음 도예 공방. (n.d.). 가마의 종류. Retrieved from https://pjh-409.tistory.com/16081094

14. 별방전통도기&다기. (n.d.). 도자기 가마. Retrieved from https://m.cafe.daum.net/masro/dr7/273?svc=cafeapi

15. 밸류체인타임스. (n.d.). 산화소성과 환원소성에 따라 다르게 구워지는 도자기. Retrieved from https://www.valuetimes.co.kr/new/?bmode=view&idx=13695245

Citations:
[1] https://pjh-409.tistory.com/16081094
[2] http://www.3.co.kr/technote7/board.php?board=3newsbuss&command=body&config=2&no=49&page=20
[3] https://youngkxxn.tistory.com/93
[4] https://www.garbotableware.com/ko/tableware-acticles/what-you-know-about-glaze-of-porcelain-tableware.html
[5] https://m.cafe.daum.net/masro/dr7/273?svc=cafeapi
[6] https://www.valuetimes.co.kr/new/?bmode=view&idx=13695245

 

 

[스크랩] 가마의 종류

도자 공예를 가리켜 흔히 <불의 예술>이라 한다. 가마는 열의 소비량을 줄이고 높은 열을 얻으려는 노력으로 만들어 사용되기 시작했다. 가마의 종류는 사용연료, 소성방법과 소성목적, 가마의

pjh-409.tistory.com

 

 

가마의 종류

  가마의 종류 가마의 종류   1.소성작업의 형식에 따른 분류 불연속가마(不連續式 窯, Intermittent Kiln)-한번 소성할 때마다 가마재임, 소성, 그리고 가마내기 를 가마가 식은 다음에 따로 행하기

www.3.co.kr

 

 

[도자기] 산화소성 환원소성 원리

1. 소성 소성이란, 광물류를 고온처리하여 굽는것을 말하며, 여기서 말하는 소성은 '도자기를 굽는다.' 정도로 이해하시면 됩니다. 도자기를 구울 때는, 초벌과 재벌을 합니다. ▶ 초벌소성(1차소

youngkxxn.tistory.com

 

 

도자기 식기의 "유약"에 대해 알고 있는 것

유약은 규산염의 일종입니다. 도자기에 적용되는 유약은 일반적으로 석영, 장석 및 점토로 만들어집니다. 갈아서 물을 가하여 준비한 후 몸체 표면에 코팅하고 일정한 온도에서 소성한 후 녹여

www.garbotableware.com

 

 

도자기 가마

가마(窯, Kiln) 도자기를 구워내기 위하여 내화물로 단열처리가 된 열처리 시설을 말하며, 재래식가마는 주로 나무를 연료로 사용하였으나 최근에는 기름, 가스, 전기 등을 연료로 사용한다. 따라

m.cafe.daum.net

 

 

산화소성과 환원소성에 따라 다르게 구워지는 도자기 l 밸류체인타임스 : 밸류체인타임스

[밸류체인타임스=권예원 수습기자] 도자기를 완성하려면 도자기의 형태를 만든 뒤 유약을 입히고 가마에 넣어 구워야 한다. 이때 가마의 종류는 전기가마, 전통가마 등 여러 가지로 나뉘지만 구

www.valuetimes.co.kr

 


Types of Kilns and the Importance of Fuel Selection in Ceramic Firing

1. Introduction

The firing process is a critical stage in ceramic production, with the choice of kiln and fuel playing a pivotal role in determining the final product’s quality and characteristics. This study systematically analyzes the types of kilns and the significance of fuel selection in ceramic firing.


2. Types of Kilns

2.1 Classification by Structure

According to Rhodes (1973), kilns can be classified into three main types based on their structure:

  1. Intermittent Kiln:
    • Firing is done batch by batch with loading, firing, and unloading performed separately.
    • Suitable for small-scale production and experimental firing.
  2. Semi-continuous Kiln:
    • Includes traditional kilns like Korean Onggi kilns.
    • Offers better heat efficiency and is suitable for medium-scale production.
  3. Continuous Kiln:
    • Examples include tunnel kilns used in modern industries.
    • Highly efficient and designed for large-scale production.

2.2 Classification by Flame Path

Kingery et al. (1976) classified kilns based on the movement of flames:

  1. Horizontal Flame Kiln: Flames travel sideways.
  2. Vertical Flame Kiln: Flames rise vertically.
  3. Downdraft Kiln: Flames rise and then descend before exiting the kiln.

2.3 Classification by Fuel Type

Carty and Senapati (1998) categorized kilns based on the type of fuel used:

  1. Wood-fired kiln.
  2. Coal-fired kiln.
  3. Oil-fired kiln.
  4. Gas-fired kiln.
  5. Electric kiln.

3. Types and Characteristics of Fuels

3.1 Solid Fuels

Solid fuels like wood and coal are commonly used in traditional kilns. According to Peterson (2002), wood-fired kilns exhibit the following characteristics:

  1. Produce natural flame effects.
  2. Ash deposits create unique surface textures.
  3. Cost-effective and widely available.

However, wood kilns are difficult to control and may contribute to air pollution.

3.2 Liquid Fuels

Liquid fuels such as diesel and heavy oil are used for their high heat output. Richerson (2005) describes their characteristics:

  1. Suitable for high-temperature firing.
  2. Stable fuel supply.
  3. Relatively easy temperature control.

However, liquid fuels can release harmful gases during combustion, posing environmental concerns.

3.3 Gaseous Fuels

Common gaseous fuels include propane and natural gas. Carter and Norton (2007) identified the following characteristics of gas-fired kilns:

  1. Precise temperature control.
  2. Cleaner combustion, making them environmentally friendly.
  3. Facilitate control of oxidation and reduction atmospheres.

Gas kilns are among the most widely used kilns in modern ceramics.

3.4 Electricity

Electric kilns are the most modern type. According to the Korea Ceramic Foundation, electric kilns offer the following features:

  1. Highly precise temperature control with automation.
  2. Clean operation with no emissions or noise.
  3. Easy installation and maintenance.

However, they can incur high operational costs due to electricity consumption.


4. Importance of Kiln and Fuel Selection

4.1 Controlling the Firing Atmosphere

The choice of kiln and fuel is crucial in determining the firing atmosphere. Seoul National University (2018) highlights the importance of atmosphere control (oxidation vs. reduction) in influencing ceramic color and texture. For example, celadon requires a reduction atmosphere achievable with wood or gas kilns.

4.2 Temperature Control

Accurate temperature control is essential for ensuring the quality of ceramics. According to the Korean Intellectual Property Office, gas and electric kilns provide superior temperature precision, making them ideal for high-quality ceramics.

4.3 Heat Efficiency

The heat efficiency of a kiln is directly linked to fuel consumption. Research by the National Research Institute of Cultural Heritage (2012) indicates that continuous and semi-continuous kilns are more efficient, whereas intermittent kilns are better suited for small-scale or artistic projects.

4.4 Environmental Impact

The environmental impact of firing depends heavily on the kiln type and fuel. According to the Ministry of Environment, electric and gas kilns are cleaner, while wood and coal kilns emit more pollutants.

4.5 Economic Considerations

The Korea Institute of Ceramic Engineering and Technology highlights the economic implications of kiln and fuel selection, emphasizing the need to balance initial investment, operational costs, and maintenance expenses.


5. Conclusion

The choice of kiln and fuel in ceramic firing significantly affects the final product’s quality, productivity, cost-efficiency, and environmental impact. Traditional kilns like wood-fired kilns offer unique artistic effects, while modern electric and gas kilns provide precision and environmental benefits.

Ceramic artists and manufacturers must consider their production scale, desired product characteristics, economic factors, and environmental concerns when selecting kilns and fuels. As technology advances, new types of kilns and fuels will continue to emerge, requiring ongoing research and adaptation.


References

  1. Rhodes, D. (1973). Clay and Glazes for the Potter. Chilton Book Company.
  2. Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. (1976). Introduction to Ceramics. John Wiley & Sons.
  3. Carty, W. M., & Senapati, U. (1998). Porcelain—Raw Materials, Processing, Phase Evolution, and Mechanical Behavior. Journal of the American Ceramic Society, 81(1), 3–20.
  4. Peterson, S. (2002). The Craft and Art of Clay: A Complete Potter's Handbook. Laurence King Publishing.
  5. Richerson, D. W. (2005). Modern Ceramic Engineering: Properties, Processing, and Use in Design. CRC Press.
  6. Carter, C. B., & Norton, M. G. (2007). Ceramic Materials: Science and Engineering. Springer Science & Business Media.
  7. Korea Ceramic Foundation. (n.d.). Types and Characteristics of Kilns in Ceramics. Retrieved from Korea Ceramic Foundation
  8. Seoul National University. (2018). Study on Ceramic Firing Atmospheres. S-Space.
  9. Korean Intellectual Property Office. (n.d.). Trends in Ceramic Firing Technology. Retrieved from KIPO
  10. National Research Institute of Cultural Heritage. (2012). Traditional Ceramic Production Techniques. Retrieved from NRICH
  11. Ministry of Environment. (n.d.). Air Pollution from Ceramic Industries. Retrieved from Ministry of Environment
  12. Korea Institute of Ceramic Engineering and Technology. (n.d.). Economic Analysis of Ceramic Production. Retrieved from KICET

Citations:
[1] https://pjh-409.tistory.com/16081094
[2] https://www.valuetimes.co.kr/new/?bmode=view&idx=13695245
[3] https://kocef.org/details-on-kilns